
14 Digital Fundamentals

The majority of digital components adhere to power-of-two magnitude definitions. However,
some industries break from these conventions largely for reasons of product promotion. A key exam-
ple is the hard disk drive industry, which specifies prefixes in decimal terms (e.g., 1 MB = 1,000,000
bytes). The advantage of doing this is to inflate the apparent capacity of the disk drive: a drive that
provides 10,000,000,000 bytes of storage can be labeled as “10 GB” in decimal terms, but it would
have to be labeled as only 9.31 GB in binary terms (1010 ÷ 230 = 9.31).

1.5 BINARY ADDITION

Despite the fact that most engineers use hex data representation, it has already been shown that logic
gates operate on strings of bits that compose each unit of data. Binary arithmetic is performed ac-
cording to the same rules as decimal arithmetic. When adding two numbers, each column of digits is
added in sequence from right to left and, if the sum of any column is greater than the value of the
highest digit, a carry is added to the next column. In binary, the largest digit is 1, so any sum greater
than 1 will result in a carry. The addition of 1112 and 0112 (7 + 3 = 10) is illustrated below.

In the first column, the sum of two ones is 210, or 102, resulting in a carry to the second column.
The sum of the second column is 310, or 112, resulting in both a carry to the next column and a one
in the sum. When all three columns are completed, a carry remains, having been pushed into a new
fourth column. The carry is, in effect, added to leading 0s and descends to the sum line as a 1.

The logic to perform binary addition is actually not very complicated. At the heart of a 1-bit adder
is the XOR gate, whose result is the sum of two bits without the associated carry bit. An XOR gate
generates a 1 when either input is 1, but not both. On its own, the XOR gate properly adds 0 + 0, 0 +
1, and 1 + 0. The fourth possibility, 1 + 1 = 2, requires a carry bit, because 210 = 102. Given that a
carry is generated only when both inputs are 1, an AND gate can be used to produce the carry. A so-
called half-adder is represented as follows:

This logic is called a half-adder because it does only part of the job when multiple bits must be
added together. Summing multibit data values requires a carry to ripple across the bit positions start-
ing from the LSB. The half-adder has no provision for a carry input from the preceding bit position.
A full-adder incorporates a carry input and can therefore be used to implement a complete summa-
tion circuit for an arbitrarily large pair of numbers. Table 1.9 lists the complete full-adder input/out-
put relationship with a carry input (CIN) from the previous bit position and a carry output (COUT) to
the next bit position. Note that all possible sums from zero to three are properly accounted for by
combining COUT and sum. When CIN = 0, the circuit behaves exactly like the half-adder.

1 1 1 0 carry bits

1 1 1

+ 0 1 1

1 0 1 0

sum A B⊕=

carry AB=

-Balch.book Page 14 Thursday, May 15, 2003 3:46 PM

Digital Logic 15

Full-adder logic can be expressed in a variety of ways. It may be recognized that full-adder logic
can be implemented by connecting two half-adders in sequence as shown in Fig. 1.9. This full-adder
directly generates a sum by computing the XOR of all three inputs. The carry is obtained by combin-
ing the carry from each addition stage. A logical OR is sufficient for COUT, because there can never
be a case in which both half-adders generate a carry at the same time. If the A + B half-adder gener-
ates a carry, the partial sum will be 0, making a carry from the second half-adder impossible. The as-
sociated logic equations are as follows:

Equivalent logic, although in different form, would be obtained using a K-map, because XOR/
XNOR functions are not direct results of K-map AND/OR solutions.

1.6 SUBTRACTION AND NEGATIVE NUMBERS

Binary subtraction is closely related to addition. As with many operations, subtraction can be imple-
mented in a variety of ways. It is possible to derive a Boolean equation that directly subtracts two
numbers. However, an efficient solution is to add the negative of the subtrahend to the minuend

TABLE 1.9 1-Bit Full-Adder Truth Table

CIN A B COUT Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A
B

CIN

sum

COUT

FIGURE 1.9 Full-adder logic diagram.

sum A B CIN⊕ ⊕=

COUT AB A B⊕()CIN[]+=

-Balch.book Page 15 Thursday, May 15, 2003 3:46 PM

